Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 81: 891-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26391598

RESUMO

We report surface-enhanced Raman spectroscopic (SERS) studies on free calf thymus DNA and its complexes with anti-tumor chloroethyl nitrosourea derivatives; semustine and nimustine. Since, first incident of SERS in 1974, it has rapidly established into an analytical tool, which can be used for the trace detection and characterization of analytes. Here, we depict yet another application of SERS in the field of drug-DNA interaction and thereby, its promising role in rational designing of new chemotherapeutic agents. Vibrational spectral analysis has been performed in an attempt to delineate the anti-cancer action mechanism of above mentioned nitrosourea derivatives. Strong SERS bands associated with the complexation of DNA with semustine and nimustine have been observed, which reveal binding of nitrosourea derivatives with heterocyclic nitrogenous base pair of DNA duplex. Formation of dG-dC interstrand cross-link in DNA double helices is also suggested by the SERS spectral outcomes of CENUs-DNA adduct. Results, demonstrated here, reflect recent progress in the newly developing field of drug-DNA interaction analysis via SERS.


Assuntos
DNA/química , Nimustina/química , Semustina/química , Análise Espectral Raman/métodos , Animais , Bovinos , Coloides , Nanopartículas Metálicas/química , Prata/química , Espectrofotometria Ultravioleta
2.
J Biomol Struct Dyn ; 33(8): 1653-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25350567

RESUMO

Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine-DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine-DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-time-drug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53 × 10(3) M(-1) and 8.12 × 10(3) M(-1), respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects.


Assuntos
Antineoplásicos Alquilantes/química , Adutos de DNA/química , DNA/química , Lomustina/química , Modelos Moleculares , Semustina/química , Algoritmos , Antineoplásicos Alquilantes/metabolismo , Dicroísmo Circular , DNA/metabolismo , Lomustina/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Rapid Commun Mass Spectrom ; 25(14): 2027-34, 2011 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21698685

RESUMO

Chloroethynitrosoureas (CENUs) are important alkylating agents widely used in the treatment of cancers. Decomposition of CENUs generates active electrophilic ions that damage DNA, including the formation of dG-dC crosslinks which represents the most important cytotoxic mechanism of CENUs. In this work, a high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) method was employed to analyze the dG-dC crosslinks induced by 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (meCCNU, Semustine). The direct quantitation of dG-dC crosslinks in oligonucleotide duplexes was achieved by the selected reaction monitoring (SRM) mode using synthesized (15) N(3) -labeled dG-dC as an internal standard. Methods of enzymatic digestion and HPLC separation were developed for obtaining separation and reproducibility of the dG-dC peak in chromatograms. The limit-of-detection (LOD) was determined to be 0.08 nM and the limit-of-quantification (LOQ) was determined to be 0.16 nM. The linearity of the calibration curve was 0.9997 over the range of 0.08 to 32 nM. The precision and accuracy of the method ranged from 1.1 to 6.6% and 96 to 109%, respectively. The recovery of the dG-dC crosslink in the enzymatic hydrolysates from the oligonucleotide duplex was determined to be from 91 to 106%. The results of the validation study indicate that the method is suitable for quantifying dG-dC crosslinks in DNA. Consequently, this method was used to determine meCCNU-induced dG-dC crosslinks in four duplexes with different GC contents. The results showed that the crosslinking fraction (CF) increased as the GC content in the duplex increased, and a relatively low CF was observed in the early period of the reaction.


Assuntos
Reagentes de Ligações Cruzadas/química , Nucleotídeos de Desoxicitosina/análise , Desoxiguanosina/análise , Semustina/química , Espectrometria de Massas em Tandem/métodos , Antineoplásicos Alquilantes/química , Cromatografia Líquida de Alta Pressão/métodos , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxicitosina/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...